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Customer Successes
with Model-Based Design
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HEV: System-Level Design & Optimization
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Photovoltaic Solar Power Vehicle Systems
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Agenda

- Model-Based Design: System-Level Context

= Modeling electrical and electronic components
— PV cells, panels, arrays and batteries
— Power converters and inverters

= Designing control algorithms for power electronics
— Voltage and current regulation
— Maximum power point tracking (MPPT)

= Modeling vehicle dynamics and mechanical components
— Transmission, clutches and tires

= Support for Student Competitions
— Software

— Learning Resources

10



&\ MathWorks:

How does a PV cell work?
Anatomy of a PV cell

anti-reflective layer
n-type * .
.

gap PI=|Beeien 0.6 — 0.7 Volts

p-type _
- t .
backplane T

J 3

= Photogeneration: Short circuit current I is proportional to the number of
absorbed photons that cross the pn-junction (when photon energy h, > E,,,).

- Charge separation: Open circuit voltage V.. depends on the pn-junction
diode-like characteristics, V,. < E,,,/q (Where q is the elementary charge on
an electron).
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How does a PV cell work?
PV Cell Equivalent Circuit
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Model Using Fundamental Approaches

File Edit View Simulation Format Tools Help
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Photovoltaic Cell - Physical Components -
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Physical Modeling in Simulink®

Simscape™
SimPowerSystems™
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Multi-domain physical systems
Electrical power systems Fluid power and control

SimMechanics™ SimElectronics™

SimDriveline™

Mechanical dynamics (3-D) Drivetrain systems (1-D) Electromechanical and
electronic systems
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Model using experimental test data
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Import your test data Generate surface fit for

Use 2D Lookup Table
experimental V-1 curves

model in simulation
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Data Driven Modeling in Simulink®

= Curve Fitting Toolbox

= Optimization Toolbox

= Neural Network Toolbox

- System ldentification Toolbox === L
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Battery Models:

Parameters
Gen er I C y Pre-DefI n ed . Mominal voltage, V_nominal: |12 V w
¢ . Internal resistance, R.1: 2 Ohrn
= Generic
1A 1 : b attery charge capacity: ini w
» Generic: SimElectronics T oattery | mEvewescgesty e
o Ampere-Hour rating, AH: 50 hr=a
— Charge-dependent voltage source it harge: 1 oo
— Parameters found on data sheets e <ol s | [V @
Charge AH1 when no-oad 25 hr=a
volts are V1:
Self-discharge resistance, R2: |Incude w

« Pre-Defined: SimPowerSystems s3] [om
— Several pre-defined models
— Full parameterization
— Documentation provides

extensive detall

Battery

Farameters View Discharge Characteristics Battery Dynamics

Battery type Mickel-Metal -Hydride ,v-
Lead-Acid

MNominal Voltage (V) 1.2 Lithium-Ton
Mickel-Cadmium

Rated Capacity (Ah) 1.3 Nickel-MetalHydride
Initial State-Of-Charge (%) 100 k

IUse parameters based on Battery type and nominal values

Maximum Capacity (Ah) 1.6154
Fully Charged Voltage (V) 1.4136
Mominal Discharge Current (A) 0.3
Internal Resistance (Ohms) 0.008
Capacity (Ah) @ Mominal Yoltage 1.4423

Exponential zone [Voltage (V), Capacdity (ah)] |[1.3017 0.3]

4\ MathWorks'
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Battery Models: s 4
Custom Cell e |Battery

T cell
A\

= Use supplied component
build new components via
Simscape language
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Battery cell equivalent discharge circuit
Resistors, capacitor, and voltage source
are dependent upon SOC, DOC,
and temperature

-\

equations
v == i*R20*exp (A21%* (1-
pow == v¥*i;

end
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Simscape Language For Modeling
Custom Components

B Editor - c\LossyUltraCapacit: =1Ol x|
|| MAT LAB — based |an g u ag e y File E ex olbeskhop Window Hel|:i |2 :
1 component LossyUltraCapacitor B
bI' t t b d 2 % Lossy Ultracapacitor
ena Ing ex = ase 3 % Models an ultracapacitor with resistive losses.
. . 4 nodes
authorln Of h Slcal 5 p = foundation.electrical.electrical; % +:top
g p y [ n = foundation.electrical.electrical; % -:bottom
. 7 end
modeling components : pemmeters
] 9 co={1, '"F' }; % Nominal capacitance C0 at V=0
= . = 10 cv ={ 0.2, 'F/V'}; % Rate of change of C with volt:
domalns and ||brar|es 11 R = {2, "Ohm' }; % Effective series resistance
] 12 Rd = {500, 'Ohm' }; % Self-discharge resistance
13 vo={ 0, '"V' }; % Initial voltage
— Leverages MATLAB 14 end
15 variables
. . 16 i={0, A }; % Current through variable
— Object-oriented for model reuse |7 v=co v i vercase acwoss variavic
18 ve = { 0, '"V' }; % Internal variable
. . 19 end
— Generate Simulink blocks 20 function setup
21 ifR<=0
- 22 error( 'Resistance must be greater than zero' )
— Save as binary to protect IP 25 ena
e =loix 24 through( i, p.i, n.i ); % Through variable 1
[Sislock Parameters: Lossy Ultracapacitor B3| IR LI E R 25 across( v, p.v, n.v ); % Across variable v
—Lossy Ultracapacitor 26 vCc = VO,’
Models an ultracapacitor with resistive losses, 1 27 end
View source for Lossy Ultracapacitor é 28 eq'ua.tions
— Lossy 29 i == (CO0 + Cv*v)*vc.der + vc/Rd; % Equation 1
ol copactonce €0 ot Vot — = Ultracapacitor 22 en; == vc + i*R; % Equation 2 | |
Rate of change of C with valtage V: |T m g 32 end _ILI
Effective series resistance: IZ_ Im — — > ‘I I |o; P
Self-discharge resistance: W W dv v Z
Initial voltage: IU— m . _( ) _
1=(C, +Cv _dr +
oK I Cancel | Help | Apply | ?‘:’j 2 0
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Model DC to DC Power Converters

= Construct, test and re-use multiple power electronic
converter topologies quickly and efficiently

—c—

W/ Library: DCDCConverter_Lib_SE T I AT ol e F TET LT T

File Edit View Format Help

Buick

‘“Boost (step-

o| Win + Vout + of Wi

o| Win - Vout —

Buck Conwverter Boost Conwverter Buc £,
11

- Ly
Buck-Boost Convelter  ~i | _
Ready D_

4\ MathWorks'
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Model DC to DC Power Converters

= Balance model fidelity and simulation speed according
to your needs

W BidirectionalBuck_SE/DC-DC Buck
File Edt View Smulston Format Iools Help

T e e .. SimPowerSystems

@y Piecewise linear systems solution
' | Multiphase bridges and pulse generators
I : Transient and harmonic analysis

! Ry l' ' Faster simulation
1200 uF T @-—-"“_ 120 uF T lng i

ifile Edit View Simulation Format Tools Help

e T W Bidirectional_Buck §
e DeEdé& B|& 2|22 » npor [Noma BB S am‘
Vout - 100 KHz - Buck

Ready [100% odel5s

SimElectronics

Nonlinear simultaneous equations solution |

Include temperature effects '

SPICE level switching device models
Detailed simulation

Ready 100% ode23tb
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Model DC to AC Power Inverters

= Build complex, multi-phase, multi-level inverter circuits using the Universal
Bridge from the SimPowerSystems library

W DCAC_Joh HBrdge CL ] Vabs & Labc (o) W » S
File Edit Yiew Smulation Format Jools Help =1=] ,O’E“ﬁ AZEE B4 S File Ede  Yiew Jnset Jools Desktop Window Help
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O S ;
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i VVVVVVVV Frequency ax
i armore
i N lax Freques
o ez om oo 200
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Re 100% jarmo: d ——
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= Use the built-in tools in SimPowerSystems to perform harmonic analysis
directly on your simulation model

- Use average voltage models or ideal switching algorithms for control
design and faster simulation
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Voltage or Current Regulation

« Use Simulink Control Design and the Control System Toolbox to linearize
your model and interactively design controllers against requirements in the
time and frequency domain

wocy D wEa|| P

aaaaa

= Once designed, test and verify the performance of your controller against the
nonlinear model
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Maximum Power Point Tracking

PV Arra R ! Load
y Converter

T

Voltage & Current
_ PWM Generator
Sensmg

Lo |

MPPT Algorithm + Duty Cycle Adjustment

= In general, when a module is directly connected to a load, the operating
point is seldom the MPP

= A power converter is needed to adjust the energy flow from the PV
array to the load

= Multiple well-known direct control algorithms are used to perform the
maximum power point tracking (MPPT)
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Maximum Power Point

Tracking

Incremental Conductance Algorithm

Calculate
AV =V(K) - Vik-1)
Al =1(K) - 1(k1)

Based on the differentiation of the PV array
power versus voltage curve:

Flowchart of the Incremental Conductance MPPT Algorithm

— 0= 1 +V —=0=——
v

dp =d(VI) :Id—V+Vd—I= I +Vd—I
dVv dVv dVv dVv dVv
The MPP will be found when:

dP di I _ di

vV odv
Where I/V represents the instantaneous

conductance of the PV array and dl/dV is the
instantaneous change in conductance.

The comparison of those two quantities tells
us on which side of the MPP we are currently

operating.
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Maximum Power Point Tracking

; S
(B3 Stteflow (char) PV MPPT_3phHBridge 07/DC-DC Buck Controls MPPT Algor..| s (=h |

File Edit View Simulation Debug Tools Format Add Pattens Help
F IR Y IGER A 1 R

"TYIELT IR

deltal = lpv - lprev;

SAMPLEandCALCULATE
entry.
——7 deltaV = Vpv - Vprev,
d=D;

},

G 5SS |2 |2 B |4 o | @ |6

f
L [IMCREMEVWI'_DUTY DECREMEI‘IIT_DU;'Y ‘:“
‘\ entry Lentry \ ‘ /
d=d +deltad; d=d-deltad [
l [ /
B RETUR!; " //
A< Fntry Jr §
¥ Vprev = Vpv; prev = lpv; e
D=d
L4
[« [
Create Transition
| S— — E— = 3
STATEFLOW Chart

Incremental Conductance Algorithm

Based on the differentiation of the PV array
power versus voltage curve:

P_av) _ vy a v &

dVv

— 0= 1 +V —=0=——
d v

dVv dVv dVv dv

The MPP will be found when:
dP dl | dl

vV dv
Where I/V represents the instantaneous
conductance of the PV array and dl/dV is the
instantaneous change in conductance.

The comparison of those two quantities tells
us on which side of the MPP we are currently

operating.
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Photovoltaic Solar Power Vehicle Systems
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Mechanical Drivetrain: SimDriveline

= Power Split Device

— Planetary gear, from acfof Jdlp dofhf
gear libraries in SimDriveline T ey
[ i
. E —F :H i hroffie C Thrgftle C
« Full Vehicle Model 7% s
. T”‘e mode|S Diesel Engine Gascline Engine
- Transient and steady-state dynamics s B
. . y y bgf;‘_\,:-;zr 2 ) Fx
— Longitudinal dynamics

= Relevant for fuel economy studies

= Engine Model
— Lookup-table relating speed to available power

= Extend models using Simscape language or Simulink

&\ MathWorks:
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MathWorks Support for American Solar
Challenge

= Complimentary
Software for teams to
use for the competition

= On-demand webinars

= Free MATLAB and
Simulink Tutorials

" ri(

Learn More: American Solar Challenge Resource Page on MathWorks Website

- "q 5 1 0 '- J ‘ i
ﬁ V S l“ ALY
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http://www.mathworks.com/academia/student-competitions/american-solar/
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