

How to Win Using Modeling and Simulation

– 2019 IEF Solar Car Conference

Swarooph Seshadri

(All models and code in this presentation can be downloaded <u>here</u>)

© 2019 The MathWorks, Inc.

Swarooph Seshadri

Supporting automotive student competitions @ MathWorks

Based in Natick, Massachusetts

M.S. in mechanical engineering: Dynamic systems, controls and optimization

Agenda

Agenda

Why model?

too big

too difficult

one chance

ABB Optimizes Ship Energy Flows

DCNS Simulates Handling System

Lockheed Martin Develops MRO

World Record? 0 - 100 km/h in 1.9 seconds

Academic Motorsports Club Zurich (AMZ) Formula Student Team

World Record? Averaged ~107 km/h over 500 km

University of New South Wales World Solar Challenge Racing Team

Applications Demo

Example Modeling Tasks on a Solar Car

Model-Based Design

MathWorks Overview

MATLAB

Math, graphics, and programming

- Numeric computation
- Data analytics and visualization
- Algorithm development and collaboration
- **Toolboxes** for:
 - Signal and image processing
 - Statistics and machine learning
 - Optimization
 - Symbolic math

SIMULINK®

Modeling, simulation, and embedded systems

- Platform for Model-Based Design
 - Block diagram modeling
 - **Simulation** of physical systems
 - Automatic code generation
- Applications in:
 - Control systems
 - Dynamics modeling
 - Signal processing
 - Communications systems

... and more

Double-click to open the GUI and select an

Deeply Involved in Education

MATLAB and Simulink are the tools of inspiration and innovation used by students, educators, and researchers around the world.

5000+ colleges and universities

1900+ MATLAB and Simulink-based books

Tens of thousands of skilled graduates each year

Student Competitions

Sponsored 47 competitions and provided software to >3000 teams in 2018 Fields include automotive, aerospace, biotech, programming, and robotics

Get the Software

Complimentary Software

- Work with MATLAB, Simulink and ~90 toolboxes
 Bigger than some campus licenses
- Install it on your personal / team machines
 Great freedom and ease of use
- Access the technical support
 Solve your problems faster

Request software

https://www.mathworks.com/academia/student-competitions/american-solar.html

Competition License

MATLAB, Simulink,

23

Get Going

Modeling Techniques

Equation Based Modeling

Data Driven Modeling

Equation Based Modeling

Simulink

- Quasi-standard for control design in academia and industry
- Baseline tool that supports many add-ons (e.g. Simscape, Powertrain Blockset)
- Equation-based modeling approach
- Code generation support for hardware testing and deployment

Great choice if:

- You want to get started with vehicle modeling
- You seek simplicity and speed for models
- You like the equation-based approach
 - → <u>Getting Started with Simulink</u>

7

Vehicle Dynamics Represented with Glider Model

Parameter	Units	Description	
ρ	kg/m^3	Air density	
C _d	-	Drag coefficient	
A_f	m ²	Vehicle frontal area	
V	m/s	Vehicle speed	
a	m/s^2	Vehicle acceleration	
m_i	kg	Vehicle inertial mass	
m	kg	Vehicle mass	
g	m/s^2	Gravity	
θ^*	Degrees	Road angle	
\overline{C}_{rr}	-	Rolling resistance coefficient	

$$F_{tr} = F_{aero} + F_i + F_{grade} + F_{rr}$$

$$F_{aero} = \frac{1}{2}\rho C_d A_f V^2$$

$$m_i = 1.04m$$

$$F_i = am_i$$

$$a = \frac{F_{tr} - (F_{aero} + F_{grade} + F_{rr})}{m_i}$$

$$F_{grade} = mg \sin(\theta)$$

$$F_{rr} = mg C_{rr}$$

Racing Lounge video

Source: Model input: Sun, Zhu 2015 [1] US06 Drive Cycle [2]

Vehicle Dynamics of a BEV Describing Power Loss

Power Loss Modeling

$$P_{out} = P_{in} - P_{loss}(P_{in})$$
$$P_{loss} = C_0 + C_1 * P_{in} + C_2 * P_{in}^2$$

Source: Zhang & Mi 2011 [3]

- Power loss models look at the power flow through the vehicle
- Account for the losses associated with each component
- Easy to understand

Racing Lounge video

References

- [1] Sun, Zongxuan, and Guoming Zhu. *Design and control of automotive propulsion systems*. Boca Raton, Fla: CRC Press, 2015. Print.
- [2] "Dynamometer Drive Schedules." *EPA*. Environmental Protection Agency, 31 Jan. 2017. Web. Apr. 2017.
- [3] Zhang, B, and Mi, C. (2011), "Charge-Depleting Control Strategies and Fuel Optimization of Blended-Mode Plug-In Hybrid Electric Vehicles", *IEEE Transactions on Vehicular Technology*, Vol. 60, No. 4, May 2011.

Data Driven Modeling

Powertrain Blockset[™] and Vehicle Dynamics Blockset[™]

- Specialized Simulink blocks for vehicle component modeling
- Well-documented, open, and reconfigurable models
- Parameterize models using equations or data
- Reference application examples
- Code generation support

Powertrain Blockset[™] Example: Electric Vehicle

>> autoblkEvStart

Vehicle Dynamics Blockset[™] Example: Double Lane Change

>> vdynblksDblLaneChangeStart

Vehicle Dynamics Blockset[™] Features:

- Model and simulate vehicle dynamics in a virtual 3D environment
- Use Vehicle Dynamics Blockset to:
 - characterize vehicle performance under standard driving maneuvers
 - design and test chassis control systems
 - create virtual 3D test ground for ADAS and automated driving features

Ride & handling

Chassis controls

ADAS / AD

Physical Modeling

Simscape™

- Model multidomain systems
 - Mechanical, electrical, fluid, thermal, and more!
 - Create custom domains and blocks

- Automatically derives equations from physical block connections
- Units and unit conversion

Simscape[™] Product Family

- Specialized Simscape add-on products
- Mechanical, fluid, and electrical systems

Simscape[™] Example: Lithium Cell Equivalent Circuit Model

>> ssc_lithium_cell_2RC

Simscape[™] Example: Solar Cell Power Curve

>> elec_solar_cell

Introduction to Simscape Multibody™

- Model 3D rigid body mechanical systems
- Bodies, joints, and transforms
 - Model matches structure of system
 - No need to derive and program equations
- Add dynamic effects
 - Stiffness/damping, external forces, constraints
- Mechanics Explorer visualization tool

Simscape Multibody[™] Import from CAD

- Plugins: SolidWorks, Creo, Inventor
- Supports Onshape
 - Cloud-based CAD tool
 - Supports native CAD (CATIA, NX, DWG, etc.) and neutral CAD (IGES, SAT, STEP, ACIS, JT, Parasolid, DXF, etc.) formats
- Racing Lounge <u>blog post</u> and <u>video</u>

Simscape Multibody™ Example: Full Vehicle + Suspension

Racing Lounge video

Recap: Which Tools To Use?

Modeling Technique	When To Choose	Software Tool
Equation based	 System equations are already known or can be derived <i>"Need a calculator to solve my equations and process results"</i> 	MATLAB + Simulink
Data driven	 Combine pre-made, detailed, and customizable models for powertrain and vehicle dynamics components Connect to Unreal Engine for virtual environments and sensing 	Powertrain Blockset + Vehicle Dynamics Blockset
Physical Modeling	 Model 1D mechanisms (motors, shifter actuators, etc.) Model multidomain systems (mechatronic, fluid, thermal) Reduce visual complexity: model without deriving equations 	Simscape
	 Model 3D rigid body systems (suspension, steering, etc.) Import kinematic models from CAD and add dynamics 	Simscape Multibody

... and you can combine them all!

Fixed-Point Modeling	Event-Based Modeling	Physical Modeling	Applications
Rapid Prototyping and HIL Simulation	Verification, Validation, and Test	Simulation Graphics and Reporting	Control Systems
SIMULINK [®]		Signal Processing and Communications	
Simulation and Model-Based Design Parallel Computing Code Generation MAATLAB® The Language of Technical Computing			Image Processing and Computer Vision
			Test and Measurement
			Computational Finance
Math, Statistics, and Optimization	Application Deployment	Database Access and Reporting	Computational Biology

https://www.mathworks.com/products

Automatic Code Generation

ANSI C/C++ for embedded systems

MATLAB Coder Simulink Coder Embedded Coder

HDL for FPGAs

HDL Coder HDL Verifier

Structured text for PLCs Simulink PLC Coder

Programming **GPUs** GPU Coder

https://www.mathworks.com/hardware

MathWorks[®]

Learn

https://www.mathworks.com/academia/student-competitions/tutorials-videos.html

Learn MATLAB and Simulink for Automotive Engineering

Longitudinal Vehicle Dynamics

3D Suspension Modeling

Terrain + Wind

Vehicle + Tire + Brake

Model

Sensors

https://www.mathworks.com/racinglounge

MATLAB and Simulink Racing Lounge: Lap Time Simulation; Essential Part of Concept Development

MATLAB and Simulink Racing Lounge: Importing CAD Assemblies into Simscape Multibody

MATLAB and Simulink Racing Lounge: Battery Modeling with Simulink

MATLAB and Simulink Racing Lounge: Developing Algorithms for ADAS Systems with MATLAB and Simulink

racinglounge@mathworks.com

Other Materials

https://www.mathworks.com/roboticsarena

Computer Vision Training

Watch videos on:

- Object detection
- Feature matching
- Camera calibration
- Point clouds

Design algorithms to help with autonomous recognition of targets and obstacle avoidance!

Code Generation Training

Learn to generate and use standalone C/C++ code from:

- MATLAB code
- Simulink models
- Stateflow charts

Deploy algorithms to Arduino and Raspberry Pi!

Win!

Get Complimentary Software

R2018b ~90 Toolboxes

https://www.mathworks.com/academia/student-competitions/american-solar.html

Request software

Learn Industry Grade Tools from Experts

https://www.mathworks.com/academia/student-competitions/tutorials-videos.html

Use Model-Based Design

Contact Us!

MATLAB and Simulink Racing Lounge

Community for competitions in automotive engineering

mathworks.com/racinglounge

- racinglounge@mathworks.com
- facebook.com/groups/racinglounge

Most Viewed

MATLAB and Simulink Racing Lounge: Battery Modeling with

MATLAB and Simulink Racing Lounge: Lap Time Simulation; Essential Part of Concept Development

Veer Alakshendra shared a link.

Advantages of Vehicle Modeling - Don't Miss Out!

BLOGS.MATHWORKS.COM

Advantages of Vehicle Modeling - Don't Miss Out!

In today's blog post I am happy to introduce Ed Marquez Brunal, a first-tim.

Q&A

https://bit.ly/2TigTGF

Please help us out by filling out the survey! Come get a gift!

More Resources

- Battery Modeling:
 - https://www.mathworks.com/discovery/battery-models.html
- Motor Control:
 - <u>https://www.mathworks.com/discovery/motor-control.html</u>
- Solar Modeling related examples:
 - <u>https://www.mathworks.com/help/search.html?qdoc=solar+type%3Aex+product%3Asps</u>
- CFD Modeling in MATLAB:
 - <u>https://blogs.mathworks.com/racing-lounge/2018/06/20/cfd-modeling-using-matlab/</u>

Thank You!