

IEF Solar Car Conference 2021

Aerodynamic Development of the 2019 Durham University Solar Car

Prof. David Sims-Williams

Outline

Solar Car Aerodynamics Fundamentals Vehicle Conceptual Design Aerodynamic Development of DUSC 2019 Build

Test & Compete

University

Where is *Durham?*

- Durham is a small city in the North East of England
- 3rd university in England
- First to teach Engineering in 1838.
- Multi-Disciplinary Engineering programme
 - Good fit for Solar Car

Outline

Solar Car Aerodynamics Fundamentals

Vehicle Conceptual Design Aerodynamic Development of DUSC 2019 Build

Test & Compete

Solar Car Aerodynamics - Fundamentals

- Requiring input power from a solar array on the vehicle means:
 - The size of the vehicle will be on the scale of a conventional road car.
 - Must design a car that needs much less power than a conventional road car.
- Main outgoings:
 - Aerodynamics
 - Rolling Resistance

Solar Car Aerodynamics - Fundamentals

- Aerodynamic drag increases with velocity squared.
 - $Drag = C_D A \frac{1}{2} \rho u^2$
 - Aerodynamic power increases with velocity cubed (Power = Force x Velocity)
- Rolling Resistance is approximately independent of speed.
 - Rolling power will be proportional to velocity (Power = Force x Velocity)
- For the fastest solar cars aerodynamics becomes the dominant outgoing.

Solar Car Aerodynamics - Fundamentals

- The first priority is to avoid separated (reversed) flow.
- Then:
 - Avoid lift-induced drag (trailing vortices)
 - Minimise skin-friction (eg: by delaying transition from laminar to turbulent)
- For a low drag vehicle small things become significant
 - Junction drag horseshoe vortices
 - Ventilation drag (cooling drag see [1])
 - Body gaps and steps see [2], [3]
- Useful references: [4] Solar Car Aero
 - [2] Drag of anything from canopies to bolt heads

Outline

Solar Car Aerodynamics Fundamentals Vehicle Conceptual Design Aerodynamic Development of DUSC 2019 Build

Test & Compete

- There is a strong interaction between the aerodynamic design and other systems on the car!
 Cabin NACA duct for air intake Solar Panels
 - Previous undergraduate design projects had investigated:
 - vehicle concepts (eg: tilting arrays)
 - suspension space requirements etc.
 - Vehicle configuration was decided by the senior members of the extra-curricular team
 - before any specific aerodynamic development
 - Main aerodynamic development undertaken as a capstone project [5].

• Separate (/Tilting?) Solar Array Designs

North West University (South Africa) "Naledi"

Halmstad "Heart Three"

Chalmers "Alfrödull"

Separate (/Tilting?) Solar Array Designs

North West University (South Africa) "Naledi"

FROM LARGE SURFACE AREA "Heart Three"

Chalmers "Alfrödull"

MORE SOLAR POWER

AERO PENALTY

• "Monohull" Designs

Stanford University "Black Mamba"

University of Michigan "Novum"

• "Monohull" Designs

Stanford University "Black Mamba"

University of Michigan "Novum"

Cambridge University "Mirage"

TU Delft "Nuna"

University of Western Sydney "Unlimited 2.0"

• Asymmetric "Catamaran" Designs

TU Delft "Nuna"

University of Western Sydney "Unlimited 2.0"

Stanford "Sundae"

Outline

Solar Car Aerodynamics Fundamentals Vehicle Conceptual Design

Aerodynamic Development of DUSC 2019

Build

Durham University

Test & Compete

urham

University

DUEM

Aerodynamic Development of DUSC 2019

ırham

Universitv

irham

Universitv

- Starting point:
 - Cell arithmetic, wheels/tyres, driver scan, driver headspace & rollhoop regulations, vision regulations and candidate suspension designs
 - Aerodynamic specification requirements on aerodynamic lift and sideforce resolved at front and rear axles (including yaw – up to 20° - 30°)
 - Aerodynamic drag target(s) (including yaw ~4°-5° is typical)

- Starting point:
 - Cell arithmetic, wheels/tyres, driver scan, driver headspace & rollhoop regulations, vision regulations and candidate suspension designs
 - Aerodynamic specification requirements on aerodynamic lift and sideforce resolved at front and rear axles (including yaw – up to 20° - 30°)
 - Aerodynamic drag target(s) (including yaw ~4°-5° is typical)

- Overall Process / Toolchain
 - Java Foil Initial 2D design of main body.
 - Solidworks Pointwise Fluent Tecplot
 - Scale Model Mule Test (Modified DUSC 2015/2017)
 - Scale Model Test of DUSC 2019

DUEM

- Java Foil Initial 2D design of main body.
 - Starting point: NACA 66009 laminar flow profile (see [6] for aerofoils)
 - Java Foil inverse design used to match baseline pressure distribution when in ground effect.

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - Automated re-meshing when CAD geometry modified
 - Meshing in Pointwise
 - Quad-dominated surface mesh
 - Prism boundary layer mesh y+ < 1
 - Tetrahedral mesh in far field
 - 24-30M cells.

DUEM

Figures from [5]

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - Simulations ran overnight on 4 core Intel Xeon 3.7 GHz m/cs with 64Gb RAM
 - k-ω-SST and transition-SST models used.

DUEM

Figures from [5]

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - 10x31 cell array vs 12x28 cell array
 - Small Fairings vs Wide Fairings
 - 3 Fairings vs 2 Fairings

Figures from [5]

- Solidworks Pointwise Fluent Tecplot Main Design Development ۲
 - 10x31 cell array vs 12x28 cell array
 - Small Fairings vs Wide Fairings •
 - 3 Fairings vs 2 Fairings

DUEM

- Small fairings reduce vehicle aero drag but are too narrow to allow the vehicle to steer
- Hence small fairings with opening doors when driver steers
- Need to be well-Engineered to work in practice!

- Solidworks Pointwise Fluent Tecplot Main Design Development ۲
 - 10x31 cell array vs 12x28 cell array
 - Small Fairings vs Wide Fairings
 - 3 Fairings vs 2 Fairings ٠

Universitv

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - 10x31 cell array vs 12x28 cell array
 - Small Fairings vs Wide Fairings
 - 3 Fairings vs 2 Fairings
 - Conflicting CFD results
 - Ran tunnel test

Universitv

Figures from [5] Model by [7]

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - 10x31 cell array vs 12x28 cell array
 - Small Fairings vs Wide Fairings
 - 3 Fairings vs 2 Fairings

- Left Hand Drive? (The United Kingdom and Australia are both Right Hand Drive countries)
 - Drive: North to South, 8am-5pm
 - 4 hours before noon = sun in the East
 - 5 hours after noon = sun in the West

- Left Hand Drive? (The United Kingdom and Australia are both Right Hand Drive countries)
 - Drive: North to South, 8am-5pm
 - 4 hours before noon = sun in the East
 - 5 hours after noon = sun in the West

Simulated solar output cell by cell over event:

- Left Hand Drive?
 - Crosswinds on wheel fairings provide sailing thrust
 - Reduces drag at yaw

- Left Hand Drive?
 - Drive: North to South, 8am-5pm
 - Prevailing wind is from the East

Alice Springs 3pm in October 1942-2016

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - Progressive refinement:
 - Cell arrangement
 - Leading edge
 - Canopy
 - Wheel Fairing Leading and Trailing Edges

Case 207

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - Progressive refinement:

Iniversitv

- Forces (C_{DA} , C_{LAF} , C_{LAR}) are the bottom line.
- Flowfield provides guidance on how to improve.
 - Automated standard plots for every case.
 - Wake Total Pressure

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - Progressive refinement:
 - Forces (C_{DA} , C_{LAF} , C_{LAR}) are the bottom line.
 - Flowfield provides guidance on how to improve.
 - Automated standard plots for every case.
 - Wake Total Pressure

Contours of total pressure coefficient + Isosurface at C_{PTot}=0.5

- Solidworks Pointwise Fluent Tecplot Main Design Development
 - Progressive refinement:
 - Forces (C_{DA} , C_{LAF} , C_{LAR}) are the bottom line.
 - Flowfield provides guidance on how to improve.
 - Automated standard plots for every case.
 - Wake Total Pressure

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CPTot:

- Scale Model Test of DUSC 2019
 - 35% Scale Model
 - Necuron 480 Model Board on Aluminium Frame
 - Detail parts rapid prototyped on Objet Eden 500V
 - Durham 2m² Wind Tunnel in Fixed Ground Configuration
 - Blockage < 5%
 - Re = $2.3 \times 10^6 (30 \text{ m/s})$

Figures from [5]

- Scale Model Test of DUSC 2019
 - Wind tunnel results >10% higher on C_DA vs CFD at same Re.
 - ~30 repeats of baseline config. over the test programme all within 1% (0.001m² C_DA Full Scale)

- Scale Model Test of DUSC 2019
 - Refinement of rear lights
 - Investigation of impacts of small devices (winglets, footplates etc).
 - Detailed Yaw Sweep
 - Effects of Pitch and Rideheight

- Zero Yaw:
 - $C_D A = 0.105 m^2$ (wind tunnel, model Re), $0.092 m^2$ (CFD, full scale Re)
 - and yaw makes things better...

- Wheel Inner Housings
 - Used by several teams (but not on Durham cars...)
 - Tight fitting wheel housings within the wheel fairing
 - Move with the suspension and steering

- Wheel Inner Housings
 - CFD & Wind Tunnel investigation at full scale as capstone project

- Wheel Inner Housings
 - CFD & Wind Tunnel investigation at full scale as capstone project
 - Wheel housings can provide a drag saving
 - The gain is ΔC_D =-0.067 based on wheel frontal area which is ~ $\Delta C_D A$ =-0.01m² on the vehicle.
 - A tight fit is good, but too tight a fit can increase drag relative to not having an inner housing.

Outline

Solar Car Aerodynamics Fundamentals Vehicle Conceptual Design Aerodynamic Development of DUSC 2019 Build

Test & Compete

Durham University

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

DUEM

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

- Positive patterns machined in modelboard
 - ~1000 hours machining time
- Pattern pieces assembled & painted
- Sanded and Polished
- Wet-Layup of Fibreglass-Epoxy Moulds
- Cure in Vacuum Bag
- 8 Piece Main Mould
- Monocoque Chassis
 - Carbon (+Kevlar) Skin, Rohacell Core
 - Pre-preg with vacuum cure in oven
 - Chassis ~40 kg, whole car: 175 kg

Outline

Solar Car Aerodynamics Fundamentals Vehicle Conceptual Design Aerodynamic Development of DUSC 2019 Build

Test & Compete

Durham University

- Testing at Bruntingthorpe Proving Ground
- Ship / Fly to Australia
- Hot-Weather Testing at Gunn Point Road, NT, Aus.
 - Confirmed C_DA
- World Solar Challenge
 - Drove North Coast to South Coast, just short of Adelaide...
 - Ranked 14th.

- Testing at Bruntingthorpe Proving Ground
- Ship / Fly to Australia
- Hot-Weather Testing at Gunn Point Road, NT, Aus.
 - Confirmed C_DA
- World Solar Challenge
 - Drove North Coast to South Coast, just short of Adelaide...
 - Ranked 14th.

- Testing at Bruntingthorpe Proving Ground
- Ship / Fly to Australia
- Hot-Weather Testing at Gunn Point Road, NT, Aus.
 - Confirmed C_DA
- World Solar Challenge
 - Drove North Coast to South Coast, just short of Adelaide...
 - Ranked 14th.

- Testing at Bruntingthorpe Proving Ground
- Ship / Fly to Australia
- Hot-Weather Testing at Gunn Point Road, NT, Aus.
 - Confirmed C_DA
- World Solar Challenge
 - Drove North Coast to South Coast, just short of Adelaide...
 - Ranked 14th.

References

- 1. Williams, J., Aerodynamic Drag of Engine Cooling Airflows With External Interference, SAE Vehicle Aerodynamics SP-1786, 2003-01-0996, Society of Automotive Engineers, 2003.
- 2. Hoerner, S, F, Fluid Dynamic Drag: Practical Information on Aerodynamic Drag and Hydrodynamic Resistance, 1965.
- 3. University of Minnesota, Solar Car Aerodynamics & Body Design, IEF Solar Car Conference 2015. <u>https://www.americansolarchallenge.org/ASC/wp-content/uploads/2015/04/2015-Solar-Car-Conference-Aerodynamics.pdf</u>.
- 4. Tamai, G, The Leading Edge: Aerodynamic Design of Ultra-streamlined Land Vehicles (Engineering and Performance), Bentley, 2009.
- 5. Stemmler, A, Aerodynamic Design and Analysis of a Challenger Class Solar Car, University of Stuttgart Masterarbeit, undertaken at Durham University, 2018.
- 6. Abbott, IH and Von Doenhoff, AE, Theory of Wing Sections, Dover Books, 1960.
- 7. Fung, J, Solar car aerodynamic evaluation and development, Master's Thesis, Durham University, Department of Engineering, 2016.
- 8. Wilderspin, J, Wheel and Tyre Aerodynamic Streamlining for Ultra-Low Carbon Vehicles, Master's Thesis, Durham University, Department of Engineering, 2020.
- 9. Dagkoulis, G, Wheel and Tyre Aerodynamic Streamlining for Ultra Low Carbon Vehicles, Master's Thesis, Durham University, Department of Engineering, 2019.

More Information

- <u>http://www.duem.org</u>
- <u>https://www.dur.ac.uk/engineering/</u>
- <u>https://twitter.com/DUEM_Electric</u>
- DUEM_electric @DUEM_electric
- https://www.youtube.com/channel/UCCEutnq5g_Lq2fbb7VHG5bQ

IEF Solar Car Conference 2021

Aerodynamic Development of the 2019 Durham University Solar Car

Prof. David Sims-Williams