

Maximum Power Point Tracking of Solar Array

By Elmar Peters, hello@elmar.solar +1 (415) 644-8227 for calls / text +31 (6) 4032-2716 for whatsapp linkedin: https://www.linkedin.com/in/elmarpeters/

first solar car race: World solar challenge 2013, Solar Team Twente

now founder of Elmar Solar (sold MPPT's to WSC winner in 2019)

Outline

- Solar car examples
- Solar cell modeling / local maxima
- Diodes
- MPPT efficiency
- Series MPPT's
- DMPPT's

Examples

Canopy shade !!!

Canopy shade !!!

Different angle = different irradiation

Simple solutions

No curve and no shade \rightarrow No problem!

No solar cells near the canopy = no shaded cells

Smaller cells = smaller groups

smaller cells in shaded areas

is a good idea!

Solar cell modeling

Solar cell model

IV curve for different irradiations

+

Example of dynamic MPPT tracking

Different angle = different irradiation

IV curve for 2 solar arrays

IV curve for series solar cell

Dynamic tracking example

Beware

Don't take Global MPPT tracking for granted!

https://youtu.be/iuE0y/iu202t_200

Diodes

Diodes, why?

- Increasing output power of your array
- Avoiding damage to your solar array

Less is better?

https://www.avdweb.nl/tech-tips/pv-panels/bypass-diodes

Less is better?

https://www.avdweb.nl/tech-tips/pv-panels/bypass-diodes

Multilevel groups

Smart diodes

First smart bypass diode

Self made smart bypass diode Made by OKE services in 2006

Modern smart bypass diode

- TI SM74611
- Might confuse MPPT's

MPPT efficiency

Efficiency of Elmar Solar's Best MPPT (2021)

V_OUT = 120V

Power loss of Elmar Solar's Best MPPT (2021)

V_OUT = 120V

Series MPPT's

series boost MPPT's

does not work very well for compensating shaded cells

let's see why https://www.st.com/en/ power-management/spv 1020.html

Output Series MPPT

Output Series MPPT

Traditional MPPT

80W x 5modules = 400W 400W x 99% = 396W

26cel

80W

26cel

85W

26cel

90W

26cell

85W

26cel

80W

traditional MPPT

Our MPPT

80W + 85W + 90W + 85W + 80W = 420W 420W x 99% = 415W

example with 2 series MPPT's and shade

top MPPT goes from 20V to 15V so this should be a BUCK!!!

bottom MPPT goes to 45V so this needs to be compatible with the MAX output voltage spec!!!

Output Series MPPT

Works well for solving small differences like curvature

Does **NOT** work well for compensating shaded arrays Will still go in **BYPASS**

TOKAI PAPER

look for:

Buck-Boost-Type MPPT Circuit Suitable for Vehicle-Mounted Photovoltaic Power Generation

Fumihisa Kano^{*,**a}, Member Yuji Kasai^{***}, Member Hideki Kimura^{****}, Member Kouhei Sagawa^{****}, Non-member Junnosuke Haruna^{*}, Member Hirohito Funato^{*}, Senior Member

DMPPT's

SABINE

Solar array balancing

Voltage monitoring

a li-ion voltage monitor system designed for 2.5-4.2V li-ion series cells can also be used to monitor larger strings of solar cells.

Make groups of 5 or 6 solar cells to be within the measurement range.

The idea

taking current from strong cells and moving that current to weaker cells to make them all have equal

1 way of doing this: inductive

basically by putting a bidirectional buck or boost converter in parallel to transfer "current"

another way of doing this: capacitive

equalizes the voltage of multiple cells

only works to set Vcel1 = Vcel2

so works if Vmpp1=Vmpp2

DMMPT example / paper

PV Source

https://publications.typeset.io/publication/distributed-pv-powerextraction-based-on-a-modified-interleaved/figure/fig-3-propos ed-interleaved-sepic-based-dmppt-configuration.png

Buck string optimizer

