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What Is a Composite Material?

A composite material is one in which at least two distinct materials with significantly
different material characteristics are joined to act as a single material

Composite materials come in a variety of types, including:
* Particulate Composites (Particles + Matrix)
 Laminated Composites (Layers)
* Fibrous-Matrix Laminated Composites (Layers — “Long fiber + Matrix”)
* Core Stiffened Laminated Composites
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Advantages of Composite Design

Why use composites for creating structural components?

The material property of the composites can be engineered according to the application
requirements.

The ability to impart the required material property gives them great advantage when
compared with traditional homogeneous materials like steel or aluminum.

Composites have increased strength to weight ratios in use cases against isotropic metals
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Composite Designable Material Properties

Take the following example:
A simple square steel plate in tension needs to have displacement of 0.1 in x-direction.
« Designing for above requirement is a simple task

« What is the associated displacement of the part for the same loading in the y-direction?
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What if the displacement in the y-direction needs to be no more than 0.025 units?
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Composite Designable Material Properties

Using isotropic vs orthotropic materials force different approaches to this design problem

Steel, being an isotropic material, can not change its properties in different directions. Hence different
behavior in different directions needs to be achieved through changing the geometry.
In case of composites, achieving the above is as simple as determining the correct number of plies in x and

directions. .
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Ability to design the material property gives lot of freedom to the designers but increases the complexity of
the design task.

Orthotropic designs must take into account undesirable behaviors like extensional-shear coupling, bending-

twist coupling, etc °
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Composite Designable Material Properties

Using isotropic vs orthotropic materials force different approaches to this design problem

Steel, being an isotropic material, can not change its properties in different directions. Hence different
behavior in different directions needs to be achieved through changing the geometry.

In case of composites, achieving the above is as simple as determining the correct number of plies in x and
y directions.
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Ability to design the material property gives lot of freedom to the designers but increases the complexity of
the design task.

Orthotropic designs must take into account undesirable behaviors like extensional-shear coupling, bending-

twist coupling, etc
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Finite Element Simulation: Metals vs. Composites

FE of Metal Structures

Geometrye

Material Properties (Isotropic)

Loads and BC'’s

Visualization of Results on the Geometry
Failure based on Invariants

$-

FE of Composite Structures
 Geometry

Material Properties (Non-Isotropic)
Ply Orientations

Constituent Properties

Loads and Boundary Conditions

 Visualization of Results on Geometry,
Thru-Laminate, and Constituent Level

* Failure is based on 3D Stress State, is
Directional, and Dependent on Constituent
Properties

L) ALIAIR



© Altair Enaineering, Inc. Proprietary and Confidential. All riahts reserved.

Composite Material and Element Orientation and Ply Alignment

For shell elements using anisotropic materials, the x-axis of the material system defaults
to the vector from G1-G2, parallel to the first and second nodes of the element definition

* Note that the element coordinate system and the material coordinate system are not the

same concept
* The element coordinate system is always defined by the bi-section of vectors from G1-

G3 and G2-G4
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Understanding Composite Material Properties

The strain-stress relationship for isotropic linear elastic materials is given by:
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As shown, isotropic linear elastic materials have only two independent engineering constants.
Any two of E, G, or v which are related by the equation:

E
2(1+v)
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Understanding Composite Material Properties

Laminated composite material properties are generally modeled as orthotropic materials
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Thus, the strain-stress relationship can be rewritten as the following:
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Zone Based Data
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Zone Based Data
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Ply Based Data

Name ID @ Onentation Thickness Material Shape
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Ply Based Data

Name ID @ Onentation Thickness Matenal Shape
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Typical Modeling Workflow

2) Material orientation
(0° fiber direction)

3) Ply creation
(orientation, thickness,
material, shape)

1) Laminate stacking
direction (element normals)

4) Laminate creation
(ply stacking sequence,
analysis settings)

= & laminatel N |

6) Draping simulation
(calculate flat shape, fiber
angle changes due to
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geometry curvature) ° piy2 2M 450 02 caon_epoxy il shape
5) Template property creation < ply3 3 @ oo 02 carbon_epoxy full_shape
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‘ Color m
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‘ User Comments Hide In Menu/Expont
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Orientations

In OptiStruct, the final fiber direction of a given ply is determined by as many as three rotations:

1. Reference orientation is a rotation from the element x axis (THETA field on element) at each
element, or the x axis of a local system

2. Orientation defined on a ply applies an additional rotation on the reference orientation

3. Drape table (typically from a draping simulation) applies an additional rotation on the ply
orientation

1-actual fiber direction (Drape)

G4 4 . —
1-nominal fiber direction (PLY)

0 . Element x direction (CQUAD)
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Advanced Material Model Development

Transition from Traditional Homogeneous Isotropic
to Accurate Heterogeneous Anisotropic Material Models

Continuous Products (Unidirectional and Weaves)

Advanced Material Model Development
Reduce Time/Cost in the Design Process

due to incomplete material understanding;
Reduce experimental data requirements,
Increase simulation accuracy! 4\ ALTAIR
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What do we mean by Multiscale?

An example of a unidirectional material

Scale0 (Sconstituent MicroStructure) The stress at any scale is the

volume average stress of the scale below
Example:
Sply IS the volume average stress of Sriber/Matrix

Scalel (Sriber/Matrix) gPly =10 gFibery Fiber [ gMatrix|y Matrix

Scale2 (sriy)

Scale3 (SLaminate)
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What do we mean by Multiscale?

An example of a metal

The stress at any scale is the
volume average stress of the scale below

ScaleO (Scrain)

Example:
SMetal IS the volume average stress of Scrain

gMetal _ ) gGrainy Grain

Scalel (Swetal)

3 = 2\ ALTAIR
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Multiscale Material Model Development (MMMD)

Develop Predictive Material Models from the Linear Regime to Ultimate Failure with
Minimal Experimental Data Requirements by Extracting Properties at Scale 1 (Fiber/Matrix)

2-Scale, N-Phase Framework

Scale 1- Micromechanics Scale 2— Macromechanics
rT-T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T TN r—-—=-="=T=-T-TT-TT s T T T T T T T T T T T T
! Matrix (Phase 1) Fiber (Phase 2) E _ : Composite Product i
; Behavior Behavior ! (Stiffness) ! Behavior |
4 3 i Homogenization 1 4 :
. | : :
! I o :
: g 2 1 — LB |
| + ! 3 :
| E 3 ! - !
1 2 = i o g |
: ' Dehomogenization | ¢ |
! : i(Phase Stress/Strain)! .
" > - [ : [
IR b ORI Foersuan _ J — L ____ Homegenized Stan _ ______ J

Scale 0 — Microstructure :
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Composite Design Optimization with OptiStruct

@ Initial Design Space @ Composite Free-Size / Size Optimization
| (What are the most efficient ply shapes?)
(How many of each ply shape required?)

@ Topology Optimization
(What is the most efficient part shape?)
Repeat Laminate Technology

Double-Double
(6/0/-6/90)
(6/-6)ns
(6/-6/¢/-0)ns

Pt g

Sl EEH

} Solves N for every element
Solves 0, ¢ for the global part
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Composite Design Optimization with OptiStruct

Ply Shape Concepts and Final Design
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Contact Us

My Email:
“Kory Soukup”

Solar Car Success Stories:

For Competition & Sponsorship Info:
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