EMBEDDED SOFTWARE AND EMBEDDED SOFTWARE
"R ARCHITECTURE
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ABOUT ME: JONATHAN MULLEN

B.S. Computer Engineering 2019 - University of lllinois
Currently: Embedded Software Engineer @ Optivolt
Previously: Embedded Software Engineer & Controls Engineer @ John Deere

ASC 2022 Race Staff




ME & SOLAR CAR

e ||lini Solar Car Team
= President, Business Lead, Electrical Co-Lead
= Team Captain ASC 2018 & FSGP 2019
e Left: Argo(2017)
= Wrote Code for Driver Ul, BMS, & Lights
= Driverin 2018 & 2019
e Right: Brizo (2021)
= Desiged Steering Wheel Electrical Hardware
= Wrote Code for Steering Wheel, BMS, Motor Control, Datalogger
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TODAY'S OVERVIEW

e Embedded Firmware For Solar Cars
= BMS Fault Prevention
= Testing
e Embedded Firmware Architecture
= Coupling (and modularity)
e Hardware Choices (briefly)
e Electrical System Architecture (briefly)

After: Question / Discussion Time



WHAT IS EMBEDDED SOFTWARE

1. Software that interacts with specific hardware
2.0n a microcontroller in a device not considered a computer

e Line between embedded software and firmware is blurry

e Almost always written in a compiled languages
e Software typically all stored in on-chip memory



EMBEDDED SYSTEMS IN SOLAR CARS




WHAT IS SOFTWARE ARCHITECTURE

AND WHY IS IT IMPORTANT

e Software Architecture is the design of your software

= Designs the structure, interactions, and overall behavior of the system
e Good Software Architecture makes your life easier

= Reduces bugs

m Easier to Debug & Test

e Good Architecture helps your team perform better
= Help you stay on the road / get back on the road faster if something goes

wrong
= Your codebase will be more maintainable & extendable



HARDWARE

Think about software when making hardware choices!
Overspeccing MCUs will save you lots of time & complexity
Use the same (family of) MCU on all your boards!
Specs / Features to Consider:
= Memory & Speed
= Built in Watchdog Timer, Brownout Detection, etc.
= Floating Point Hardware
= Reassignable Peripheral Pins
At least look over the programming portion of datasheets before hardware design
= Sometimes are gotchas that can lead to a hardware revision...



SYSTEM ARCHITECTURE

Distributed Centralized

More HW & SW More Complex HW & SW

Simpler & Less Coupled Sofware  Avoid Networking Complexities
Communications add delays May require more software overhead
Failures Are Independent Fewer Things to Fail

Often Easier to Add Functionality Individual Parts have more complete Info

e Everysolar car is somewhat distributed, balance how much

? 9
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NETWORKING

e On (solar) cars CAN is most common

e Some Network Types (Especially CAN) are very difficult to analyze
m For this reason, >30% utilization is often considered a full CAN bus

= Beyond thisitis hard to be sure low priority messages are on time (or close to

on time)
e Generally | suggest using periodic messages, not request based, on solar cars

= More Predictable
= Don't stop getting data if requester has issues



FIRMWARE ARCHITECTURE



FIRMWARE ARCHITECTURE

e Microcontroller (MCU)
s GPIO, ADC, Timers, Communications, etc.

e Peripheral Hardware
= |O Expander, Encoders, Screens, etc.



FIRMWARE ARCHITECTURE

e Handles MCU Bring Up, configuration
m |f used, an OS will handle much of this

e |ncludes any code that writes MCU registers
e Exposes an API for hardware interaction



FIRMWARE ARCHITECTURE

e |nterfaces with peripheral hardware
m Sometimes provided by manufacturers

= |ikely uses the HW Interface
e Or,creates avirtual device such as file system



FIRMWARE ARCHITECTURE

e Determines what happens and when
s Must service hardware and peripherals as required

m All "solar car logic" called from here
e RTOS not required for a solar car




FIRMWARE ARCHITECTURE

e The "business logic"
e Makes it work like a solar car

= |nteractive: Acceleration, Regen Braking, Lights, Displays
= Background: BMS, MPPT, Datalogging, Telemetry



FIRMWARE ARCHITECTURE

THE GOAL




ola r
Scheduler

FIRMWARE ARCRITECTURE

WHAT HAPPENS



COUPLING & COHESION

GENERALLY INVERSELY RELATED

Coupling is how two systems interact with each other
Cohesion is how the parts within a system are related
Goal is High Cohesion & Low Coupling

One does not always follow the other, but usually does
For our purposes, we will assume an inverse relationship

Lpets

b) Bad (high coupling, low cohesion)



HIGH COUPLING

THE CONSEQUENCES

Shown in a real study!

e Correlated With More Bugs
e Harder to make changes
e Slower to make changes
= Need to understand more to make changes
= Easier to break unrelated things!



LOW COUPLING

THE BENEFITS

Features & Systems can be tested independently

If one part is broken, it can be easily removed/disabled

When Hardware Changes easy to replace individual pieces as needed
When Requirement Change easy to replace individual pieces as needed




600D ARCHITECTURE: AVOIDING RIGH COUPLING

1. GOOD REQUIREMENTS

e Start High Level With the System and Work Down to Specifics
= This can help with system architecture too
e Requirements come from many places
= Competition (or government) Regulations
= Purchased Components
= Competitive Uses
= Basic Vehicle Functionality
= Your Team's Goals / Desires



600D ARCHITECTURE: AVOIDING HIGH COUPLING

2. G0OD SPECIFICATIONS

e Specifications are Specific and Technical

= Whereas Requirements are Broad and Descriptive

= Each Requirement likely turns into multiple specifications
e Describes the solution to meet the requirement

e Should be explicit - specifications should imply needs



600D ARCHITECTURE: AVOIDING HIGH COUPLING

JA. BLOCK DIAGRAMS

e Turnyour requirements & corresponding specifications into blocks

e Each block should fit into only one of the categories
= Hardware
= Hardware Interface
= Peripheral Drivers
= RTOS / Scheduled

= Solar Car Logic



600D ARCHITECTURE: AVOIDING HIGH COUPLING

JB. GOOD INTERFACE DESIGN

e Yes, interfaces internal to the firmware should be designed

e Map out data that needs to be shared from component to another
e Decide which component owns the data - minimize global data

o Use getter/setter functions with minimal side effects

e Avoid designs that result in neccessary sequences of calls



600D ARCHITECTURE: AVOIDING HIGH COUPLING

4. SEPARATING CODE REVIEW FROM DESIGN REVIEW

Have your architecture sorted out before you start writing code
Doing and reviewing design and implementation at the same time is messy
You will take shortcuts for short-term easy implementation that can cause you headaches

when something changes
Have Software Design & Code Reviews



ARCHITECTURE WALKTHROUGH

OVERVIEW

e Goalistoreplace the analog controls on
a Mitsuba 1kW Motor Controller

e System needs to receive info via CAN
e Qutput to Motor Contoller via Peripherals




ARCHITECTURE WALKTHROUGH

1. GOOD REQUIREMENTS

Driver Inputs Transmitted via CAN

Torque Output of Motor Controller Scales with Accelerator Pedal Press
Motor Cannot Output Positive Torque when brake pedal pressed

Regen Braking Enabled By Buttons Regen pedal

Regenerative Braking Limited to Difference Between Max Charge Current
and Solar Array Output to Avoid Overrcurrent Faults (with a margin)
Regenerative Braking Power Reduced at High Voltages to avoid over
voltage faults



ARCHITECTURE WALKTHROUGH

2. 600D SPECIFICATIONS

e Regenerative Braking Limited to Difference Between Max Charge Current
and Solar Array Output to Avoid Overrcurrent Faults (with a margin)
= Jotal Current to be limited to margin of 0.5A below cutoff of 25A
» Receive Solar Current from MPPTs via CAN Message
»  Must Limit within 0.25s to avoid shutdown fault
e Regenerative Braking Power Reduced at High Voltages to avoid over
voltage faults

= Regen Current Limited to current that results in high cell voltage of
4,15V
= \/oltage Rise Calculated based on equal rise across all cells with pack

ESRof 125mQ
s Must Limit within 0.25s to avoid shutdown fault



ARCHITECTURE WALKTHROUGH

2. G0OD SPECIFICATIONS

e Regenerative Braking Limited to Difference Between Max Charge Current
and Solar Array Output to Avoid Overrcurrent Faults (with a margin)
e Regenerative Braking Power Reduced at High Voltages to avoid over
voltage faults
= Receive Solar Current from MPPTs via CAN Message
= Receive Max Charging Current (in 1/10A) Allowed from BMS via CAN
= Must Limit Current within 0.25s to avoid shutdown fault

~ -1 i
OO,




ARCHITECTURE WALKTHROUGH

JA. BLOCK DIAGRAMS
ol b S~ [ P—— ]

' - Device Drivers

>

-’\—[ Digital Pot | | Temp Sensor |
EX MW




ARCHITECTURE WALKTHROUGH

JB. GOOD INTERFACE DESIGN

Torque Control Class

InitializeTorque (Digital Potentiometer) :lnitialize Output to O, inputs to worst case
PedalPositions (CAN Message) : Sets the Pedal Positions and Updates Torque Output
BMSCurrentLimit (CAN Message) :Sets BMS Current Limit and Updates Torque Output
SolarArrayCurrent (CAN Message) : Sets Solar Array Current and Updates Torque Output
MotorErrorState (MotorError) : Sets motor error state and and Updates Torque Output
MotorTemperatureDerate (Derating) : Sets torque derating and and Updates Torque Output



ARCHITECTURE WALKTHROUGH

3B. GOOD INTERFACE DESIGN

Torque Control Class (revised)

InitializeTorque (Digital Potentiometer) :lInitialize Output to O, inputs to worst case
PedalPositions (CAN Message) : Sets the Pedal Positions andtpdatesForaueOutput
BMSCurrentLimit (CAN Message) : Sets BMS Current Limit and-UpdatesTorgueOutput
SolarArrayCurrent (CAN Message) : Sets Solar Array Current andUpdatesForgre-Outptit

TorgueControlTask () : Calculate New Torgue and Write to Potentiometer
MotorTemperaturelDerate (Derating)+SetstorquederatingandandaUpdatestorague Outpt




ARCHITECTURE WALKTHROUGH

4. CODE & DESIGN REVIEWS

e Design Reviews Along the Way At Specified Checkpoints

= As We've been doing!
e Use Review Checklists
e Code Review Checklist Might Include:
= Obvious Bugs
= Does it Meet Requirements & Specifications
= Does it implement the Interface As Described
= Well Commented & Readable
= |nternal Functions are well designed, no duplication
= All Possible Return/Error Values Handled
= Thread Safety, Scopes Minimized, Memory Allocation Safety, etc



WRITING THE CODE

TORQUE CONTROL




WRITING THE CODE

TORQUE CONTROL

torqueControlTask () {
accelTorque;

regenliorgue;

(getMotorError () ) {
accelTorgque = regenTorque = 0;

{

(brakePressed) {
acecelTorque = 0;
{
accelTorque = accelPedal / 1.0 * MAX TORQUE;




WRITING THE CODE

TORQUE CONTROL (REVISED)




WRITING THE CODE

SCHEDULER (SIMPLEST)

(now - lastTorqueTime > TORQUE TASK RATE) {
torqueControlTask() ;
lastTorqueTime = now;

(now — lastErrorTime > ERROR TASK RATE) {
motorErrorTask() ;
lastErrorTime = now;

This requires discrete, small, & fast tasks with few variations in behavior



WRITING THE CODE

SCHEDULER (STILL SIMPLE)

(now — lastTorqueTime > TORQUE TASK RATE) {
torqueControlTask() ;
lastTorqueTime = now;

r

(now — lastErrorTime > ERROR TASK RATE) {
motorErrorTask () ;
lastErrorTime = now;

r

This can help if you have some slow tasks to keep more important tasks running closer to on time



WRITING THE CODE

SCHEDULER (RTOS)

(1) {

(CAN.bufferNotEmpty () ) {
processUpTol 0CANMessages () ;

More complex to set-up, need to worry about everything getting interrupted, but will meet your time
requirements more precisely and potentially get more out of your hardware



DESIGN FOR RELIABILITY

e Embedded Code on a Solar Car is about reliability and maximizing your car - not the code
e Minimum Goal is Keep the Car on the Road:
= Consider how things will go wrong, handle recoverable failures
o Bounds Checking - ignore obviously bad data
= Make it easy to "turn off" non-bare neccessities
= Minimize assumptions - confirm as much as possible
o |f you must, document it
= Handle Rolling Resets Where allowable
o Use Watchdog Timers

= Be prepared to lose power at any time



TESTING YOUR CODE

UNIT TESTING

Tests your code on your computer!
Very Useful to catch logic bugs and to keep working things working

Can help make sure there are no cases in which it fails, instead of checking that there is
one in which the code succeeds

Recommend doing at the very least for any complex state machines or data manipulation
Will require mocks to fake any external/hardware calls

Libraries such as Google Test (with Google Mock), Unity Test (with C Mock) , CppUTest
(with CppUMock) can make this easy
= Many Have Integrations with your favorite IDE



TESTING YOUR CODE

DESIGN FOR UNIT TEST

e Testable Code is Small Pieces with High Cohesion
e Following the architecture step we discussed will make your code more testable
e Good Specifications will inform your tests

= They specify what behavior is important to test

= Provide a source of truth about desired behavior

jiis Build Analyzer s Static Stack Analyzer =g Progress Cii C/C=+ Unit X 4 Search =* Call Hierarchy el WM E-§ DO
Firushed after 0.787 seconds

Runs: 13 B Erors: 0 B Failures: 0 ]
v Bl 10_Expander_Tests (0.727 5} 1% Messages 9lai

g VerifyNumaAdc (0.05)

g VerifyAllDefaults (2.0 5)
g ChecksumFailures (0.0 5)
¢k InvalidCommands (0.0 )
E.‘i'?i UnimplementedCommands (0.0 5]
g ReadOnlyRegisters (0.0 5)
&= PartiD (0.0 5

Hf;_., ADCReadCount (0.0 <)
¢k! DigitalCanfig (0.176 )
¢ki DigitalOut (0.151 )

EE AnalogConfig [0.053 5)
gl ADCRead (0.302 5)

i) DigitalRead (0.00 5)



TESTING YOUR CODE

ON TARGET TESTS

Automating this is possible, although value is debatable for a solar car team
= Hardware in the loop testing (HIL Testing)
Write Test Plans - make it repeatable for when you change things!
Start by simulating inputs and validating outputs - send CAN messages, press buttons, etc.
Try to break it! Have someone else try to break it!
Debugging piece by piece will make it easier to isolate issues
Invest in testing tools - CAN Bus analyzers, extra buttons, breakout boards, etc




TESTING YOUR CODE

DESIGN FOR BENCH & CAR TEST (& RACE)

e Step 1. Get your telemtry, or at least logging, working

e Put Debug Data on CAN, more than you think you need
= You can make it disableable or remove later
e Make Parameters Configurable without reprogramming (over CAN, better: Telemetry)
= For example, when testing cruise control PID Controller, gains should be configurable

without repogramming - significant time saver
= Screen Brightness, maybe it will need to be brighter where the race is held
= Feature Toggles for non-critical features - often better to stay on the road and just

deal with it



TESTING YOUR CODE

SYSTEM BENCH TESTS

Again, use test plans

Piece by Piece assemble you system on the bench, testing some interactions and
simulating others

Eventually you want your whole system working on the bench, easier to fix than on the car
Sometimes code bugs are time based, play with it for a while!




TESTING YOUR CODE

TEST ON THE CAR

Repeat what you did on the bench!
Do it ASAP, whole car doesn't need to be done!
Test plan is important - safety risks anytime on the car
When adding new features, run without first, then introduce it
Sometimes code bugs are time based, play with it for a while!
= Make sure the code can run a full day before you come to the race!

= Or, for some systems make sure they can handle running restarts




THANK YOU!

QUESTIONS, OR RELATED DISCUSSION TOPICS WELCOME
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By EBreHui MupotwHmndeHko - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=104043458




