EMBEDDED SOFTWARE AND EMBEDDED SOFTWARE
"R ARCHITECTURE

8019::5 130
810171897} welle
S & " il
11011 1] ;mmm 1 41691 516508 Bﬁ i:ﬂ,,rr : Mgl 110010000091110011011011
2103101 10¢ - ; 018008 e LR afBl117100TUUTIEN § 108760 11“ beuell ..81111e6l1y i m:ﬂ. 1e11e1° 181
0010355061 - . 1106401911106 CIRETTR R TR e 211100 L) L1516 0108816t) b | lmﬂl \ i v o JRA0 '1'19 0013 ; - ;Eulluilumuﬂul:mmgn
nﬂlﬂﬂIElﬂEﬂﬁur‘*ﬂm' 16@ ARAE _4ulllBelpelloelelenlovw. - " g13il0eilnal | ,96.008010% ; 10116" L 911110111001601181011001000000111
0180011011 0000000110016 81111 - 00110 ﬂﬂlﬂlﬂllﬂu--m a1¢ a -llmmlﬂlﬂﬂl. | J?g_lﬂmﬁilﬂ. 110180011016¢ -3 11‘“1311511113 101010111601 000
“smﬂ%ﬂaam,,muliammmwmr..w*ﬁsmﬂa L e e S R e
000000111087 G 1T il slalaple L 38
1119&1&11&1111&].113151&&1&&““ 81115116600101110611611108 lﬁmm}:l‘l ©1100111061000009011110601611611110 1018111801000 ""ﬂlillgﬁﬁ’.l nle lﬂ WI g0Goe1ll IIEHEI 101,
1115&11&5111&&1%“111515&3uumaﬂalmuu 111601100111111601600000 umuamaaalﬁuun 00100110010 601101081011 ' Luiivw MH 0116001 ﬁ. DO 1€ 50100010000 { !
0011010110010000001110100011611110010000001100100011011110010000101010111011010000111 lﬂﬂﬂumuﬂmnllwmﬂ l‘ﬂmluﬂlﬂlllllllﬂ : H, 011 _ “111“11511 : D16E
016161110010001006600111610001101660161161161011601010601000060110001101101 100111601166011001610111661661. 1‘1“11315513113111“ """ € 016 o 80116011111 i'- jggaeoclalia
mmllalﬂﬂlﬂn“Bllﬂlﬂﬂ“ﬂlnﬂuﬂnﬁl111&115'11!“1lﬂﬂﬂ'ﬂ'lﬂﬂuﬂwxl“ﬁuﬂ 0010001000000111F : :51 1“11115111551“1151911“ """ -; m £t mﬂlmnﬁlul 01006618
mﬂﬂllﬂﬂlﬂlﬂﬂlﬂ95“1111“1&11911115111!1“1!31“ulﬂlllﬂllﬂﬂﬂﬂ1ﬂ111“11511151“51151“151151 m1m11ﬂ1m1111“1311ﬁ11u“ﬂ’ulﬂlﬂﬂ F_‘ 0] m “ 010! -‘--I 1_ 0o -.1' ll:l.lﬂ& :
Iﬁlmmllﬁlﬂﬂlﬂmmﬂuﬂﬂlllﬂl";Bﬂﬂﬂ-ﬂlilﬁlm&ﬂ&‘l ~ 5011610016 100100000€ 0100011614 1001016111601060 10100100 _‘_‘ 36165060011 1 111661606108 BE
lﬂ111Bllﬂlulﬂulﬂﬂlﬂﬂllﬂ]ﬂllnﬂ]' ¢0000111010001107 .1 100 10000001106 .3 38110 ok -:-!' J0101¢ : ’;“ 90011 0818010000081 1ﬁ111301m11991il‘.}ﬂl ' 00101101, 111“11!11 : m:llﬂl““llﬂlllﬂllﬂulllﬂ
80611116816811811116111681016 IW ﬁﬂuﬁ"a 1 __ 0810110610100 8R1160011611011] ﬂ'ﬁ 168111011661 malﬁill&ﬂ‘lﬂﬂlllﬂlﬂﬂﬂ]_&lﬂﬁ 116¢ 110011 mal ﬂﬂﬁ11n1nﬂ1n111mﬂ11mtl-lq-lqﬁn-lnnnnnn-n-------u---~:;"_t*“
mulﬂﬂlﬂﬂllﬂml“lﬂmuﬂl.- e rAs & AeuER) An11011¢ PBR11000016 : 010000001106 HE0ATE 111““"“’“'“1nﬂﬂﬂﬂﬂlllﬂlllamllllﬁ' il '*-':' gLidl --;-_. oollollliloVivovedelliooiveol lor111001000010101011101101000011110
EBIBHBHBHHEH-EB1Blllﬂﬂ19511ﬂi1ﬂ1&ﬂ1 117 ... 1811110117e" aTmnynasnAnTSEoSS oo 1013 1 OO10110L1E00LI001 114y a5]1p00090111165105 -a.‘uxxau.ktl lﬂ 111“15“1“9555111315“llﬂlﬂﬂlﬂllﬂllﬂlﬂllﬂﬂlﬂ13915“3“11“.11&115‘111151151115
e o e TR L : 7 48110411100104! DOE 10101110611006111 61 s iluvibaswuiolBl11001001100161001000000110100101110011001000000111001101101111011011000110000101110610001000000110001101
! L% “mf 1610118010000, 19110111188 I (Slis-cieaeillellsloedelllleelesloefecellnopelnlllesloslloclelenloenenelllloelsllsllllellisleloeticecenellilelllelloenelelliaslliellleleanils
011483 . L 1N T1BRA BC0 G0 181600111 [LUZie=i5ESgapd0000110001101161111611011100111011001100101011100100111016001101081011011100110011160108000011101680011010600110100161110011001111110601000
1610610¢ 11161 L o ARTE “ﬁ:; Yo, VABEEAs B s 1oy 1000008 1611 Dhesies sann-10900101118016001000000110601101100001011106100016000000111011161161111011160160110101100100000011101000110111100100000011061000110111106106001
P10111011010 ' i Tia] 081011 ‘Jﬁ]ﬂﬂllﬂ{ 'Elﬂmﬂﬂ . 6111 1610669004 I'lﬂ1115115555151115'51151115lﬂﬂﬂllﬂlﬂﬂlﬂllﬂlllﬂﬁuﬂulﬂﬂlﬂmuuﬂﬂlﬂuﬁl11151115151‘9ulﬂﬂlﬂiﬂlﬂﬂﬂﬂﬁﬂlllﬂlﬂﬂuﬁiﬂﬂlﬂuﬁllﬂlﬂllﬂﬂlﬂlﬂﬂlﬂﬂﬂﬁﬂlﬂl
€ 11611011166111611601100101011 1 i } 1169106600011101060¢ CoYoYTIan ﬂﬂlllu1ﬂﬂlﬂﬁmlﬂlﬁlﬁﬂﬂllﬂlﬂﬂﬂ1lﬂﬂlﬂlﬂ1.1155‘195115E1E15519“9&51151“15111591lﬂﬂlﬂﬂﬁﬂﬁﬂ'u1H511511911.119113119“11“9519111
1¢ 100181110010001000 01101011901600000111016001101111601000660 ="~ana1a1010111011010800111160109168006011800810111081001168101601000000111106101161111011161610013008001116111611080
] 108111 BOBE2943.0016101110010001000000111019001101001611011616110016164 A i70011101100110010101 11001001 11010001101001011011100110011 16010000001 11010001 10100001 101001
o0 AEBER1AT ge11 81100181611100100116816168010066001101001011160116010006001110011611611116 iruum 11680061 galoenes '_"""“""““nﬂﬂﬂﬂluﬂu:!.91151111911159193113191lﬂlﬂﬂﬂﬂﬂmﬂlﬂﬂﬂllﬂlulﬂﬂlﬂﬂﬂﬂﬂﬂl
lgalﬂualluu“.u, 086161018 . - 10011060(1001108161001 . 01011011110111018] J000001110" '.--.:!Eiﬁ‘-:‘l{!'-‘-li-.nn_.“n. 111616600110100101101116 “"*"-"“""ﬂ1111B'!1151&1Bl1lﬂﬂlﬂﬂﬂlﬂﬂﬂﬂﬂﬂlllﬂlmuﬂlﬂﬂlﬂllﬂ'
1 Blﬂllﬂﬂlﬂlﬂﬂlﬂﬂaﬂﬂdi1-,-1.-1.__ 16l 1181861811611106811 ! 11181606110100001101001011100210¢ 11111110601 00600¢ 161 TTETAsTATITANTLI0A100000011100116011011
1101 - ~a11000010111001080100000011060110. 1 011101116110111101110010011010116010000001110160011 9001106160611011 - 11011010000111100100100060011 00 SEERLRRL T
1A TheAnnTA1110011011101000110100100idaadal 1 : { 1016068116l0616] 161] 318(f061106011681101111011011100611191108110010101110010811 {
=+ A317171100100000010161000110100081 10w~ . BO1110¢ 11011511600110000101110 1]
4 ST TTRYATIATAS001111001001000000L Lubuvin. Li 100001811160110111
)T AT an11AA1016111601001120400641 1. 000! 1111001086060161610001] 106110¢ -
3 r TAYIIIAII00166440L01 1 _ 1160100000011] 101 11010000111160100100000011 . ' 010000001
i 4 F CToonrrsaaaeasiaalodelll | | 181 lalloble iyl 111611686110016161116861061 180611
1 J f 11101100 }01011100100010000001108 60100010000061110111011611116111 0
- " i J f povs oo - 1110100011010010116111686811¢ 1601000000111100161161111
'.I.B 10i0al . 4 [4] - e
gﬂmalﬂlld.u o | ' J ; ?
1601066 J 5 i ;
1*11 E]ﬁrf‘" TRIAT d i r.l d
- g li- /
& J 1
;] -r
d d
'y . 3
1] a
e "r
ll
4
It

JONATHAN MULLEN

ABOUT ME: JONATHAN MULLEN

B.S. Computer Engineering 2019 - University of lllinois
Currently: Embedded Software Engineer @ Optivolt
Previously: Embedded Software Engineer & Controls Engineer @ John Deere

ASC 2022 Race Staff

ME & SOLAR CAR

e ||lini Solar Car Team
= President, Business Lead, Electrical Co-Lead
= Team Captain ASC 2018 & FSGP 2019
e Left: Argo(2017)
= Wrote Code for Driver Ul, BMS, & Lights
= Driverin 2018 & 2019
e Right: Brizo (2021)
= Desiged Steering Wheel Electrical Hardware
= Wrote Code for Steering Wheel, BMS, Motor Control, Datalogger

3152

TODAY'S OVERVIEW

e Embedded Firmware For Solar Cars
= BMS Fault Prevention
= Testing
e Embedded Firmware Architecture
= Coupling (and modularity)
e Hardware Choices (briefly)
e Electrical System Architecture (briefly)

After: Question / Discussion Time

WHAT IS EMBEDDED SOFTWARE

1. Software that interacts with specific hardware
2.0n a microcontroller in a device not considered a computer

e Line between embedded software and firmware is blurry

e Almost always written in a compiled languages
e Software typically all stored in on-chip memory

EMBEDDED SYSTEMS IN SOLAR CARS

WHAT IS SOFTWARE ARCHITECTURE

AND WHY IS IT IMPORTANT

e Software Architecture is the design of your software

= Designs the structure, interactions, and overall behavior of the system
e Good Software Architecture makes your life easier

= Reduces bugs

m Easier to Debug & Test

e Good Architecture helps your team perform better
= Help you stay on the road / get back on the road faster if something goes

wrong
= Your codebase will be more maintainable & extendable

HARDWARE

Think about software when making hardware choices!
Overspeccing MCUs will save you lots of time & complexity
Use the same (family of) MCU on all your boards!
Specs / Features to Consider:
= Memory & Speed
= Built in Watchdog Timer, Brownout Detection, etc.
= Floating Point Hardware
= Reassignable Peripheral Pins
At least look over the programming portion of datasheets before hardware design
= Sometimes are gotchas that can lead to a hardware revision...

SYSTEM ARCHITECTURE

Distributed Centralized

More HW & SW More Complex HW & SW

Simpler & Less Coupled Sofware Avoid Networking Complexities
Communications add delays May require more software overhead
Failures Are Independent Fewer Things to Fail

Often Easier to Add Functionality Individual Parts have more complete Info

e Everysolar car is somewhat distributed, balance how much

? 9

T T

_O
Distributed _O
_O
_O

NETWORKING

e On (solar) cars CAN is most common

e Some Network Types (Especially CAN) are very difficult to analyze
m For this reason, >30% utilization is often considered a full CAN bus

= Beyond thisitis hard to be sure low priority messages are on time (or close to

on time)
e Generally | suggest using periodic messages, not request based, on solar cars

= More Predictable
= Don't stop getting data if requester has issues

FIRMWARE ARCHITECTURE

FIRMWARE ARCHITECTURE

e Microcontroller (MCU)
s GPIO, ADC, Timers, Communications, etc.

e Peripheral Hardware
= |O Expander, Encoders, Screens, etc.

FIRMWARE ARCHITECTURE

e Handles MCU Bring Up, configuration
m |f used, an OS will handle much of this

e |ncludes any code that writes MCU registers
e Exposes an API for hardware interaction

FIRMWARE ARCHITECTURE

e |nterfaces with peripheral hardware
m Sometimes provided by manufacturers

= |ikely uses the HW Interface
e Or,creates avirtual device such as file system

FIRMWARE ARCHITECTURE

e Determines what happens and when
s Must service hardware and peripherals as required

m All "solar car logic" called from here
e RTOS not required for a solar car

FIRMWARE ARCHITECTURE

e The "business logic"
e Makes it work like a solar car

= |nteractive: Acceleration, Regen Braking, Lights, Displays
= Background: BMS, MPPT, Datalogging, Telemetry

FIRMWARE ARCHITECTURE

THE GOAL

ola r
Scheduler

FIRMWARE ARCRITECTURE

WHAT HAPPENS

COUPLING & COHESION

GENERALLY INVERSELY RELATED

Coupling is how two systems interact with each other
Cohesion is how the parts within a system are related
Goal is High Cohesion & Low Coupling

One does not always follow the other, but usually does
For our purposes, we will assume an inverse relationship

Lpets

b) Bad (high coupling, low cohesion)

HIGH COUPLING

THE CONSEQUENCES

Shown in a real study!

e Correlated With More Bugs
e Harder to make changes
e Slower to make changes
= Need to understand more to make changes
= Easier to break unrelated things!

LOW COUPLING

THE BENEFITS

Features & Systems can be tested independently

If one part is broken, it can be easily removed/disabled

When Hardware Changes easy to replace individual pieces as needed
When Requirement Change easy to replace individual pieces as needed

600D ARCHITECTURE: AVOIDING RIGH COUPLING

1. GOOD REQUIREMENTS

e Start High Level With the System and Work Down to Specifics
= This can help with system architecture too
e Requirements come from many places
= Competition (or government) Regulations
= Purchased Components
= Competitive Uses
= Basic Vehicle Functionality
= Your Team's Goals / Desires

600D ARCHITECTURE: AVOIDING HIGH COUPLING

2. G0OD SPECIFICATIONS

e Specifications are Specific and Technical

= Whereas Requirements are Broad and Descriptive

= Each Requirement likely turns into multiple specifications
e Describes the solution to meet the requirement

e Should be explicit - specifications should imply needs

600D ARCHITECTURE: AVOIDING HIGH COUPLING

JA. BLOCK DIAGRAMS

e Turnyour requirements & corresponding specifications into blocks

e Each block should fit into only one of the categories
= Hardware
= Hardware Interface
= Peripheral Drivers
= RTOS / Scheduled

= Solar Car Logic

600D ARCHITECTURE: AVOIDING HIGH COUPLING

JB. GOOD INTERFACE DESIGN

e Yes, interfaces internal to the firmware should be designed

e Map out data that needs to be shared from component to another
e Decide which component owns the data - minimize global data

o Use getter/setter functions with minimal side effects

e Avoid designs that result in neccessary sequences of calls

600D ARCHITECTURE: AVOIDING HIGH COUPLING

4. SEPARATING CODE REVIEW FROM DESIGN REVIEW

Have your architecture sorted out before you start writing code
Doing and reviewing design and implementation at the same time is messy
You will take shortcuts for short-term easy implementation that can cause you headaches

when something changes
Have Software Design & Code Reviews

ARCHITECTURE WALKTHROUGH

OVERVIEW

e Goalistoreplace the analog controls on
a Mitsuba 1kW Motor Controller

e System needs to receive info via CAN
e Qutput to Motor Contoller via Peripherals

ARCHITECTURE WALKTHROUGH

1. GOOD REQUIREMENTS

Driver Inputs Transmitted via CAN

Torque Output of Motor Controller Scales with Accelerator Pedal Press
Motor Cannot Output Positive Torque when brake pedal pressed

Regen Braking Enabled By Buttons Regen pedal

Regenerative Braking Limited to Difference Between Max Charge Current
and Solar Array Output to Avoid Overrcurrent Faults (with a margin)
Regenerative Braking Power Reduced at High Voltages to avoid over
voltage faults

ARCHITECTURE WALKTHROUGH

2. 600D SPECIFICATIONS

e Regenerative Braking Limited to Difference Between Max Charge Current
and Solar Array Output to Avoid Overrcurrent Faults (with a margin)
= Jotal Current to be limited to margin of 0.5A below cutoff of 25A
» Receive Solar Current from MPPTs via CAN Message
» Must Limit within 0.25s to avoid shutdown fault
e Regenerative Braking Power Reduced at High Voltages to avoid over
voltage faults

= Regen Current Limited to current that results in high cell voltage of
4,15V
= \/oltage Rise Calculated based on equal rise across all cells with pack

ESRof 125mQ
s Must Limit within 0.25s to avoid shutdown fault

ARCHITECTURE WALKTHROUGH

2. G0OD SPECIFICATIONS

e Regenerative Braking Limited to Difference Between Max Charge Current
and Solar Array Output to Avoid Overrcurrent Faults (with a margin)
e Regenerative Braking Power Reduced at High Voltages to avoid over
voltage faults
= Receive Solar Current from MPPTs via CAN Message
= Receive Max Charging Current (in 1/10A) Allowed from BMS via CAN
= Must Limit Current within 0.25s to avoid shutdown fault

~ -1 i
OO,

ARCHITECTURE WALKTHROUGH

JA. BLOCK DIAGRAMS
ol b S~ [P——]

' - Device Drivers

>

-’\—[Digital Pot | | Temp Sensor |
EX MW

ARCHITECTURE WALKTHROUGH

JB. GOOD INTERFACE DESIGN

Torque Control Class

InitializeTorque (Digital Potentiometer) :lnitialize Output to O, inputs to worst case
PedalPositions (CAN Message) : Sets the Pedal Positions and Updates Torque Output
BMSCurrentLimit (CAN Message) :Sets BMS Current Limit and Updates Torque Output
SolarArrayCurrent (CAN Message) : Sets Solar Array Current and Updates Torque Output
MotorErrorState (MotorError) : Sets motor error state and and Updates Torque Output
MotorTemperatureDerate (Derating) : Sets torque derating and and Updates Torque Output

ARCHITECTURE WALKTHROUGH

3B. GOOD INTERFACE DESIGN

Torque Control Class (revised)

InitializeTorque (Digital Potentiometer) :lInitialize Output to O, inputs to worst case
PedalPositions (CAN Message) : Sets the Pedal Positions andtpdatesForaueOutput
BMSCurrentLimit (CAN Message) : Sets BMS Current Limit and-UpdatesTorgueOutput
SolarArrayCurrent (CAN Message) : Sets Solar Array Current andUpdatesForgre-Outptit

TorgueControlTask () : Calculate New Torgue and Write to Potentiometer
MotorTemperaturelDerate (Derating)+SetstorquederatingandandaUpdatestorague Outpt

ARCHITECTURE WALKTHROUGH

4. CODE & DESIGN REVIEWS

e Design Reviews Along the Way At Specified Checkpoints

= As We've been doing!
e Use Review Checklists
e Code Review Checklist Might Include:
= Obvious Bugs
= Does it Meet Requirements & Specifications
= Does it implement the Interface As Described
= Well Commented & Readable
= |nternal Functions are well designed, no duplication
= All Possible Return/Error Values Handled
= Thread Safety, Scopes Minimized, Memory Allocation Safety, etc

WRITING THE CODE

TORQUE CONTROL

WRITING THE CODE

TORQUE CONTROL

torqueControlTask () {
accelTorque;

regenliorgue;

(getMotorError ()) {
accelTorgque = regenTorque = 0;

{

(brakePressed) {
acecelTorque = 0;
{
accelTorque = accelPedal / 1.0 * MAX TORQUE;

WRITING THE CODE

TORQUE CONTROL (REVISED)

WRITING THE CODE

SCHEDULER (SIMPLEST)

(now - lastTorqueTime > TORQUE TASK RATE) {
torqueControlTask() ;
lastTorqueTime = now;

(now — lastErrorTime > ERROR TASK RATE) {
motorErrorTask() ;
lastErrorTime = now;

This requires discrete, small, & fast tasks with few variations in behavior

WRITING THE CODE

SCHEDULER (STILL SIMPLE)

(now — lastTorqueTime > TORQUE TASK RATE) {
torqueControlTask() ;
lastTorqueTime = now;

r

(now — lastErrorTime > ERROR TASK RATE) {
motorErrorTask () ;
lastErrorTime = now;

r

This can help if you have some slow tasks to keep more important tasks running closer to on time

WRITING THE CODE

SCHEDULER (RTOS)

(1) {

(CAN.bufferNotEmpty ()) {
processUpTol 0CANMessages () ;

More complex to set-up, need to worry about everything getting interrupted, but will meet your time
requirements more precisely and potentially get more out of your hardware

DESIGN FOR RELIABILITY

e Embedded Code on a Solar Car is about reliability and maximizing your car - not the code
e Minimum Goal is Keep the Car on the Road:
= Consider how things will go wrong, handle recoverable failures
o Bounds Checking - ignore obviously bad data
= Make it easy to "turn off" non-bare neccessities
= Minimize assumptions - confirm as much as possible
o |f you must, document it
= Handle Rolling Resets Where allowable
o Use Watchdog Timers

= Be prepared to lose power at any time

TESTING YOUR CODE

UNIT TESTING

Tests your code on your computer!
Very Useful to catch logic bugs and to keep working things working

Can help make sure there are no cases in which it fails, instead of checking that there is
one in which the code succeeds

Recommend doing at the very least for any complex state machines or data manipulation
Will require mocks to fake any external/hardware calls

Libraries such as Google Test (with Google Mock), Unity Test (with C Mock) , CppUTest
(with CppUMock) can make this easy
= Many Have Integrations with your favorite IDE

TESTING YOUR CODE

DESIGN FOR UNIT TEST

e Testable Code is Small Pieces with High Cohesion
e Following the architecture step we discussed will make your code more testable
e Good Specifications will inform your tests

= They specify what behavior is important to test

= Provide a source of truth about desired behavior

jiis Build Analyzer s Static Stack Analyzer =g Progress Cii C/C=+ Unit X 4 Search =* Call Hierarchy el WM E-§ DO
Firushed after 0.787 seconds

Runs: 13 B Erors: 0 B Failures: 0]
v Bl 10_Expander_Tests (0.727 5} 1% Messages 9lai

g VerifyNumaAdc (0.05)

g VerifyAllDefaults (2.0 5)
g ChecksumFailures (0.0 5)
¢k InvalidCommands (0.0)
E.‘i'?i UnimplementedCommands (0.0 5]
g ReadOnlyRegisters (0.0 5)
&= PartiD (0.0 5

Hf;_., ADCReadCount (0.0 <)
¢k! DigitalCanfig (0.176)
¢ki DigitalOut (0.151)

EE AnalogConfig [0.053 5)
gl ADCRead (0.302 5)

i) DigitalRead (0.00 5)

TESTING YOUR CODE

ON TARGET TESTS

Automating this is possible, although value is debatable for a solar car team
= Hardware in the loop testing (HIL Testing)
Write Test Plans - make it repeatable for when you change things!
Start by simulating inputs and validating outputs - send CAN messages, press buttons, etc.
Try to break it! Have someone else try to break it!
Debugging piece by piece will make it easier to isolate issues
Invest in testing tools - CAN Bus analyzers, extra buttons, breakout boards, etc

TESTING YOUR CODE

DESIGN FOR BENCH & CAR TEST (& RACE)

e Step 1. Get your telemtry, or at least logging, working

e Put Debug Data on CAN, more than you think you need
= You can make it disableable or remove later
e Make Parameters Configurable without reprogramming (over CAN, better: Telemetry)
= For example, when testing cruise control PID Controller, gains should be configurable

without repogramming - significant time saver
= Screen Brightness, maybe it will need to be brighter where the race is held
= Feature Toggles for non-critical features - often better to stay on the road and just

deal with it

TESTING YOUR CODE

SYSTEM BENCH TESTS

Again, use test plans

Piece by Piece assemble you system on the bench, testing some interactions and
simulating others

Eventually you want your whole system working on the bench, easier to fix than on the car
Sometimes code bugs are time based, play with it for a while!

TESTING YOUR CODE

TEST ON THE CAR

Repeat what you did on the bench!
Do it ASAP, whole car doesn't need to be done!
Test plan is important - safety risks anytime on the car
When adding new features, run without first, then introduce it
Sometimes code bugs are time based, play with it for a while!
= Make sure the code can run a full day before you come to the race!

= Or, for some systems make sure they can handle running restarts

THANK YOU!

QUESTIONS, OR RELATED DISCUSSION TOPICS WELCOME

Sources:

“Firmware architecture in 5 easy steps,” Embedded.com, 28-Sep-2022. [Online]. Available: https:/www.embedded.com/firmware-
architecture-in-five-easy-steps/. [Accessed: 27-Jan-2023].

M. D’Ambros, M. Lanza, and R. Robbes, “On the relationship between change coupling and software defects.” [Online]. Available:
https://users.dcc.uchile.cl/~rrobbes/p/WCRE2009-changecoupling.pdf. [Accessed: 27-Jan-2023].

M. Dunn, “Toyota's killer firmware: Bad design and its consequences,” EDN, 03-Apr-2020. [Online]. Available:
https://www.edn.com/toyotas-killer-firmware-bad-design-and-its-consequences/. [Accessed: 27-Jan-2023].

By EBreHui MupotwHmndeHko - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=104043458

